On Natural Convection Heat Transfer From Three-Dimensional Bodies of Arbitrary Shape

Author:

Hassani A. V.1,Hollands K. G. T.1

Affiliation:

1. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

Abstract

A simple expression is developed for the natural convection heat transfer from three-dimensional bodies of arbitrary shape immersed in an extensive fluid. The expression applies to both laminar and turbulent regimes and requires the calculation of purely geometric properties of the bodies. Experiments were performed with air, covering a Rayleigh number (Ra) range of from 10 to 108, on different body shapes oriented in various directions: for example, circular or square disks, a short circular cylinder of height equal to diameter and a similar cylinder but with hemispherical ends, prolate and oblate spheroids of various aspect ratio, and an “apple core” shape. Comparison between the predictions of the expression and the experimental results of this work and those gathered from several other sources ranging up to Ra = 1014 showed very good agreement, with an average rms difference of 3.5 percent for Ra < 108 and 22 percent for 108 < Ra < 1014.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3