Acute Optogenetic Modulation of Cardiac Twitch Dynamics Explored Through Modeling

Author:

Aboelkassem Yasser1,Campbell Stuart G.2

Affiliation:

1. Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 e-mail:

2. Department of Biomedical Engineering, Yale University, New Haven, CT 06511 e-mail:

Abstract

Optogenetic approaches allow cellular membrane potentials to be perturbed by light. When applied to muscle cells, mechanical events can be controlled through a process that could be termed “optomechanics.” Besides functioning as an optical on/off switch, we hypothesized that optomechanical control could include the ability to manipulate the strength and duration of contraction events. To explore this possibility, we constructed an electromechanical model of the human ventricular cardiomyocyte while adding a representation of channelrhodopsin-2 (ChR2), a light-activated channel commonly used in optogenetics. Two hybrid stimulus protocols were developed that combined light-based stimuli with traditional electrical current (all-or-none) excitation. The first protocol involved delivery of a subthreshold optical stimulus followed 50–90 ms later by an electrical stimulus. The result was a graded inhibition of peak cellular twitch force in concert with a prolongation of the intracellular Ca2+ transient. The second protocol was comprised of an electrical stimulus followed by a long light pulse (250–350 ms) that acted to prolong the cardiac action potential (AP). This created a pulse duration-dependent prolongation of the intracellular Ca2+ transient that in turn altered the rate of muscle relaxation without changing peak twitch force. These results illustrate the feasibility of acute, optomechanical manipulation of cardiomyocyte contraction and suggest that this approach could be used to probe the dynamic behavior of the cardiac sarcomere without altering its intrinsic properties. Other experimentally meaningful stimulus protocols could be designed by making use of the optomechanical cardiomyocyte model presented here.

Funder

National Institutes of Health

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3