Detection of a Defect on the Back of a Pipe by Noncontact Remote Measurements

Author:

Hayashi Takahiro1

Affiliation:

1. Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura Nishikyo-ku, Kyoto 615-8540, Japan e-mail:

Abstract

Pipe inspection is generally executed with ultrasonic pulse echo testing where a small range of pipe wall under an ultrasonic transducer can be evaluated in one measurement. Costly and laborious point-by-point testing is required if a whole range of a pipe should be inspected. The author has investigated fast defect imaging for a plate-like structure using a scanning laser source (SLS) technique as an efficient defect inspection technique. Although the imaging technique is feasible in noncontact remote measurements, only a plate cross section under the laser irradiation surface can be evaluated. This study describes detection of wall thinning on the back of a pipe using resonance of guided wave propagating in a pipe circumference by noncontact remote measurements with the SLS technique. The narrowband elastic waves are generated in a pipe by modulating laser pulses with fiber laser equipment. When the modulation frequency is in harmony with the resonance frequency of a circumferential guided wave, the distribution of the frequency spectrum peak obtained with the SLS technique becomes identical to the resonance pattern of the circumferentially guided wave mode. The distributions are distorted for a pipe with wall thinning on the back indicating that this technique has a potential for detection of defects on the back of a pipe.

Funder

Chubu Electric Power Company

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Guided ultrasonic waves propagation imaging: a review;Measurement Science and Technology;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3