A Novel Method for Optical High Spatiotemporal Strain Analysis for Transcatheter Aortic Valves In Vitro

Author:

Heide-Jørgensen Simon1,Kumaran Krishna Sellaswasmy1,Taborsky Jonas1,Bechsgaard Tommy2,Zegdi Rachid3,Johansen Peter4

Affiliation:

1. Department of Engineering, Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark

2. Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus N8200, Denmark

3. Hôpital Européen Georges Pompidou, Service de Chirurgie Cardiovasculaire, Paris 75015, France

4. Department of Engineering Faculty of Science and Technology, Aarhus University Aarhus 8000, Denmark e-mail:

Abstract

The transcatheter aortic valve implantation (TAVI) valve is a bioprosthetic valve within a metal stent frame. Like traditional surgical bioprosthetic valves, the TAVI valve leaflet tissue is expected to calcify and degrade over time. However, clinical studies of TAVI valve longevity are still limited. In order to indirectly assess the longevity of TAVI valves, an estimate of the mechanical wear and tear in terms of valvular deformation and strain of the leaflets under various conditions is warranted. The aim of this study was, therefore, to develop a platform for noncontact TAVI valve deformation analysis with both high temporal and spatial resolutions based on stereophotogrammetry and digital image correlation (DIC). A left-heart pulsatile in vitro flow loop system for mounting of TAVI valves was designed. The system enabled high-resolution imaging of all three TAVI valve leaflets simultaneously for up to 2000 frames per second through two high-speed cameras allowing three-dimensional analyses. A coating technique for applying a stochastic pattern on the leaflets of the TAVI valve was developed. The technique allowed a pattern recognition software to apply frame-by-frame cross correlation based deformation measurements from which the leaflet motions and the strain fields were derived. The spatiotemporal development of a very detailed strain field was obtained with a 0.5 ms time resolution and a spatial resolution of 72 μm/pixel. Hence, a platform offering a new and enhanced supplementary experimental evaluation of tissue valves during various conditions in vitro is presented.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3