A Cost-Driven Design Methodology for Additive Manufactured Variable Platforms in Product Families

Author:

Yao Xiling1,Moon Seung Ki2,Bi Guijun3

Affiliation:

1. Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore e-mail:

2. Assistant Professor Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore e-mail:

3. Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore e-mail:

Abstract

Additive manufacturing (AM) has evolved from prototyping to functional part fabrication for a wide range of applications. Challenges exist in developing new product design methodologies to utilize AM-enabled design freedoms while limiting costs at the same time. When major design changes are made to a part, undesired high cost increments may be incurred due to significant adjustments of AM process settings. In this research, we introduce the concept of an additive manufactured variable product platform and its associated process setting platform. Design and process setting adjustments based on a reference part are constrained within a bounded feasible space (FS) in order to limit cost increments. In this paper, we develop a cost-driven design methodology for product families implemented with additive manufactured variable platforms. A fuzzy time-driven activity-based costing (FTDABC) approach is introduced to estimate AM production costs based on process settings. Time equations in the FTDABC are computed in a trained adaptive neuro-fuzzy inference system (ANFIS). The process setting adjustment's FS boundary is identified by solving a multi-objective optimization problem. Variable platform design parameter limitations are computed in a Mamdani-type expert system, and then used as constraints in the design optimization to maximize customer perceived utility. Case studies on designing an R/C racing car family illustrate the proposed methodology and demonstrate that the optimized additive manufactured variable platforms can improve product performances at lower costs than conventional consistent platform-based design.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3