Mechanics of Living Lattice Composites With Growing Crystals

Author:

Su Yipin1,Xin An1,Wang Qiming1

Affiliation:

1. University of Southern California Sonny Astani Department of Civil and Environmental Engineering, , Los Angeles, CA 90089

Abstract

Abstract Lattice composites show excellent mechanical and acoustic properties. Compared with traditional man-made lattice composites, natural (or living) lattice composites exhibit the ability to spontaneously increase their stiffness as time increases, i.e., self-enhancement. With this paper, we study the mechanism of the self-enhancement behavior of living lattice composites. We first immerse a polymeric lattice in an oversaturated CaCO3 solution to simulate the self-enhancement behavior of living lattice composites. We then propose a modeling framework to quantitatively describe the evolution of the morphology and effective stiffness of the growing composites, including a phase field model simulation, a crystal growth prediction, and a modified lattice mechanics theory. We validate the modeling work through comparison among the theoretical prediction, experimental observation, and finite element simulation. We also study the effects of the cross sections of polymeric beams, initial concentration of the solution, and architecture type on the self-enhancement behavior of the composites. This paradigm is expected to open promising avenues for the design and fabrication of synthetic living lattice composites.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3