Machine Learning Non-Reciprocity of a Linear Waveguide With a Local Nonlinear, Asymmetric Gate: Case of Strong Coupling

Author:

Wang C.1,Mojahed A.2,Tawfick S.34,Vakakis A.1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois , Urbana, IL 61820

2. Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, MA 02139

3. Department of Mechanical Science and Engineering, University of Illinois , Urbana, IL 61820 ; , Urbana, IL 61801

4. The Beckman Institute for Advanced Science and Technology, University of Illinois , Urbana, IL 61820 ; , Urbana, IL 61801

Abstract

Abstract We study nonreciprocity in a passive linear waveguide augmented with a local asymmetric, dissipative, and strongly nonlinear gate. Strong coupling between the constituent oscillators of the waveguide is assumed, resulting in broadband capacity for wave transmission. The local nonlinearity and asymmetry at the gate can yield strong global nonreciprocal acoustics, in the sense of drastically different acoustical responses depending on which side of the waveguide a harmonic excitation is applied. Two types of highly nonreciprocal responses are observed: (i) Monochromatic responses without frequency distortion compared to the applied harmonic excitation, and (ii) strongly modulated responses (SMRs) with strong frequency distortion. The complexification averaging (CX-A) method is applied to analytically predict the monochromatic solutions of this strongly nonlinear problem, and a stability analysis is performed to study the governing bifurcations. In addition, we build a machine learning framework where neural net (NN) simulators are trained to predict the performance measures of the gated waveguide in terms of certain transmissibility and nonreciprocity measures. The NN drastically reduces the required simulation time, enabling the determination of parameter ranges for desired performance in a high-dimensional parameter space. In the predicted desirable parameter space for nonreciprocity, the maximum transmissibility reaches 40%, and the transmitted energy varies by up to three orders of magnitude depending on the direction of wave transmission. The machine learning tools along with the analytical methods of this work can inform predictive designs of practical nonreciprocal waveguides and acoustic metamaterials that incorporate local nonlinear gates.

Funder

Division of Emerging Frontiers

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3