Stress Prediction of Buried Pipes Subjected to Operational Loadings in Unsaturated Soils

Author:

Randeniya Chamal1,Robert Dilan1,Li Chun-Qing1

Affiliation:

1. Civil Engineering Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC 3001, Australia

Abstract

Abstract Pipelines are used to provide variety of services in modern community and have grown rapidly in past few decades due to growing socio-economic requirements. Most of the water mains are buried in shallow depths where the soil is partially saturated with significant spatial and temporal variations. Even though the behavior of buried pipes in such unsaturated soil condition is substantially different when compared to dry or fully saturated soil, the effect of soil saturations is overlooked in the current pipe stress prediction methods, leading to unrealistic predictions of the pipe stresses. In this study, three-dimensional (3D) finite element (FE) method was employed with advanced constitutive soil models to analyze the behavior of pipes buried in unsaturated soil condition. Having validated the FE model using reported field test data, an analytical model was proposed to predict the maximum stress in buried pipes considering soil saturation effect using a series of 3D FE analyses. Results from the FE analyses reveal that the maximum pipe stress can be significantly different when soil is in unsaturated condition when compared to dry condition. The proposed formula shows a good agreement with the field data and FE results, so that the expression can be used in the prediction of maximum pipe stress when they are buried under realistic (i.e., nondry) soil conditions.

Funder

Australian Research Council

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference30 articles.

1. Long-Term Corrosion of Cast Iron Cement Lined Pipes,2012

2. An Equation to Predict Maximum Pipe Stress Incorporating Internal and External Loadings on Buried Pipes;Can. Geotech. J.,2016

3. Comprehensive Review of Structural Deterioration of Water Mains: Physically Based Models;Urban Water,2001

4. Codified Methods to Analyse the Failures of Water Pipelines: A Review,2014

5. National Performance Report 2012–13: Urban Water Utilities,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3