Uncertainty Quantification of Differential Algebraic Equations Using Polynomial Chaos

Author:

Saha Premjit1,Singh Tarunraj1,Dargush Gary1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260

Abstract

Abstract The focus of this paper is on the use of polynomial chaos (PC) for developing surrogate models for differential algebraic equations (DAEs) with time-invariant uncertainties. Intrusive and nonintrusive approaches to synthesize PC surrogate models are presented including the use of Lagrange interpolation polynomials as basis functions. Unlike ordinary differential equations (ODEs), if the algebraic constraints are a function of the stochastic variable, some initial conditions of the DAEs are also random. A benchmark RLC circuit which is used as a benchmark for linear models is used to illustrate the development of a PC-based surrogate model. A nonlinear example of a simple pendulum also serves as a benchmark to illustrate the potential of the proposed approach. Statistics of the results of the PC models are validated using Monte Carlo (MC) simulations in addition to estimating the evolving probably density functions (PDFs) of the states of the pendulum.

Funder

National Science Foundation

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3