Assessment of Failure Life Evaluation Methods for Structural Discontinuities With Fatigue and Creep-Fatigue Tests on Multiperforated Plate Made of Mod.9Cr-1Mo Steel

Author:

Ando Masanori1,Hirose Yuichi2,Takano Masahito3

Affiliation:

1. Japan Atomic Energy Agency, Oarai-cho, Higashi-ibaraki, Ibaraki 311-1393, Japan

2. Mitsubishi Heavy Industry, Ltd., 5-717-1 Fukahori, Nagasaki, Nagasaki 851-0392, Japan

3. NESI, Inc., Shiraki 1, Tsuruga, Fukui 919-1279, Japan

Abstract

Abstract In the design of components for service at elevated temperatures, fatigue and creep-fatigue due to cyclic loading are some of the most important failure modes, and the assessment of failure life at structural discontinuities is a key issue within the evaluation of the integrity of the components. Since several fatigue and creep-fatigue life evaluation methods have been proposed, this study compares and assesses these different methods by performing fatigue and creep-fatigue tests of perforated plate made of Mod.9Cr-1Mo steel. Multiperforated plate was subjected to mechanical cyclic loading at 550 °C, and crack initiation and propagation at the surfaces of the holes were observed. The stress distribution was varied by changing the hole arrangement and loading level. A series of finite element analyses (FEA) were carried out to predict the number of cycles to failure by the several failure life evaluation methods, and these predictions were then compared with the test results. Several types of evaluation methods that use the elastic FEA were applied, namely, the stress redistribution locus (SRL) method, simple elastic follow-up method, and the methods described in the design and construction code for fast reactors (FRs) published by the Japan Society of Mechanical Engineers (JSME FRs code). In addition to these, evaluation was also carried out using the results of inelastic FEA to compare these elastic FEA-based estimation methods. The comparisons indicate that, for all conditions tested, the SRL method provided a rational prediction of the fatigue and creep-fatigue life when κ = 1.6 was applied, where κ = 1.6 is the recommended reduction factor for this method in general use. A comparison of the SRL method and the results of the inelastic FEA indicated that the applicability of the value of factor κ in the SRL method depends on the elastic region remaining in the cross section including the evaluated point and the spread in the plastically deformed region in the specimen.

Funder

Japan Atomic Energy Agency

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference13 articles.

1. Strain Concentration at Structural Discontinuities and Its Prediction Based on Characteristics of Compliance Change in Structure;JSME Int. J. Ser. A,2001

2. Strain Concentration Mechanism During Stress Relaxation Process and Its Prediction,2001

3. Sophisticated Creep-Fatigue Life Estimation Scheme for Pressure Vessel Components Based on Stress Redistribution Locus Concept,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3