Application of Some Turbulence Models to Simulate Buoyancy-Driven Flow

Author:

Abdalla Aniseh A. A.1,Yu Jiyang1,Alrwashdeh Mohammad1

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

During a severe nuclear power plant (NPP) accident, large amounts of hydrogen and steam can be produced in nuclear reactor containment. In the case of hydrogen combustion, there is a possibility of producing short term pressure or detonation force. Therefore, these gas species’ production could threaten containment integrity. For instance, in the past, two gas explosion accidents occurred: In 1979 Three Mile Island and in 2011 Fukushima. After these accidents, modeling the gas behavior became an important topic in nuclear safety analyses. In order to predict hydrogen behavior and other gas species transport, mixing and combustion, reliable turbulence models need to be applied. In this work, standard k–ε, k–ω, RNG k–ε, Realizable k–ε and SST k–ω turbulence models are addressed. The computations are performed with HYDRAGON code. HYDRAGON code is a three-dimensional thermal-hydraulic code, developed to solve low-speed gas flow of compressible Navier-Stokes equations in cartesian or cylindrical coordinates or a mixture of the two coordinates. The goal of this work is to test the performance of these models by comparing the results to the benchmark. The code aims to predict containment thermal-hydraulic conditions during NPP accident.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3