Sensitivity Analysis of a PWR Response During a Loss of Coolant Accident Under a Hypothetical Core Blockage Scenario Using RELAP5-3D

Author:

Crook Timothy1,Vaghetto Rodolfo1,Vanni Alessandro1,Hassan Yassin A.1

Affiliation:

1. Texas A&M University, College Station, TX

Abstract

During a Loss of Coolant Accident (LOCA) a substantial amount of debris may be generated in containment during the blowdown phase. This debris can become a major safety concern since it can potentially impact the Emergency Core Cooling System (ECCS). Debris, produced by the LOCA break flow and transported to the sump, could pass through the filtering systems (debris bed and sump strainer) in the long term cooling phase. If the debris were to sufficiently accumulate at the core inlet region, the core flow could theoretically decrease, affecting the core coolability. Under such conditions, the removal of decay heat would only be possible by coolant flow reaching the core through alternative flow paths, such as the core bypass (baffle). There are certain plant specific features that can play a major role in core cooling from this bypass flow. One of these of key interest is the pressure relief holes. A typical 4-loop Pressurized Water Reactor (PWR) was modeled using RELAP5-3D to simulate the reactor system response during the phases of a large break LOCA and the effectiveness of core cooling under full core blockage was analyzed. The simulation results showed that the presence of alternative flow paths may significantly increase core coolability and prevent cladding temperatures from reaching safety limits, while the lack of LOCA holes may lead to a conservative over-prediction of the cladding temperature.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental observations of boric acid precipitation scenarios;Nuclear Engineering and Design;2017-02

2. Thermal hydraulic simulations of the Angra 2 PWR;EPJ Nuclear Sciences & Technologies;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3