The Use of Servo-Constraints in the Inverse Dynamics Analysis of Underactuated Multibody Systems

Author:

Blajer Wojciech1

Affiliation:

1. Faculty of Mechanical Engineering, Institute of Applied Mechanics and Power Engineering, University of Technology and Humanities in Radom, ul. Krasickiego 54 26-600 Radom, Poland e-mail:

Abstract

Underactuated mechanical systems have fewer control inputs than degrees of freedom. The specified in time outputs, equal in number to the number of inputs, lead to servo-constraints on the system. The servo-constraint problem is then a specific inverse simulation problem in which an input control strategy (feedforward control) that forces an underactuated system to complete the partly specified motion is determined. Since mechanical systems may be “underactuated” in several ways, and the control forces may be arbitrarily oriented with respect to the servo-constraint manifold, this is, in general, a challenging task. The use of servo-constraints in the inverse dynamics analysis of underactuated systems is discussed here with an emphasis on diverse possible ways of the constraint realization. A formulation of the servo-constraint problem in configuration coordinates is compared with a setting in which the actuated coordinates are replaced with the outputs. The governing equations can then be set either as ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). The existence and nonexistence of an explicit solution to the servo-constraint problem is further discussed, related to so-called flat systems (with no internal dynamics) and nonflat systems (with internal dynamics). In case of nonflat systems, of paramount importance is stability of the internal dynamics. Simple case studies are reported to illustrate the discussion and formulations.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference48 articles.

1. Underactuated Mechanical Systems,1998

2. Olfati-Saber, R., 2001, “Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3