Blood Cell Adhesion on a Polymeric Heart Valve Leaflet Processed Using Magnetic Abrasive Finishing

Author:

Boggs Taylor,Carroll Robin,Tran-Son-Tay Roger,Yamaguchi Hitomi1,Al-Mousily Faris2,DeGroff Curt3

Affiliation:

1. e-mail:  Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611

2. Department of Pediatrics, University of Florida, Gainesville, FL 32611

3. Congenital Heart Center, University of Florida, Gainesville, FL 32611

Abstract

Polymeric heart valves have the potential to improve hemodynamic function without the complications associated with bioprosthetic and mechanical heart valves, but they have exhibited issues that need to be addressed including calcification, hydrolysis, low durability, and the adhesion of blood cells on the valves. These issues are attributed to the valves' material properties and surface conditions in addition to the hemodynamics. To overcome these issues, a new stentless, single-component trileaflet polymeric heart valve with engineered leaflet surface texture was designed, and prototypes were fabricated from a simple polymeric tube. The single-component structure features a trileaflet polymeric valve and conduit that are made of a single tube component to eliminate complications possibly caused by the interaction of multiple materials and components. This paper focuses on the leaflet surface modification and the effects of leaflet surface texture on blood cell adhesion to the leaflet surface. Silicone rubber was chosen as the working material. A magnetic abrasive finishing (MAF) process was used to alter the inner surface of the tubular mold in contact with the silicone leaflets during the curing process. It was hypothesized that the maximum profile height Rz of the mold surface should be smaller than the minimum platelet size of 1 μm to prevent platelets (1–3 μm in diameter) from becoming lodged between the peaks. Cell adhesion studies using human whole blood flushed at low shear stresses over leaflet surfaces with six different textures showed that adhesion of the platelets and red blood cells is greatly influenced by both surface roughness and lay. Leaflets replicated from MAF-produced mold surfaces consisting of short asperities smaller than 1 μm reduced blood cell adhesion and aggregation. Cell adhesion studies also found that either mold or leaflet surface roughness can be used as a measure of cell adhesion.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3