Experimental Investigation on Infrared Signatures of Axisymmetric Vectoring Exhaust Nozzle With Film Cooling and Low-Emissivity Coating

Author:

Liu Jian1,Ji Honghu1

Affiliation:

1. College of Power and Energy Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210012, Jiangsu Province, China e-mail:

Abstract

Investigations on infrared (IR) radiation suppression of axisymmetric vectoring exhaust nozzle (AVEN) are meaningful, due to the requests for maneuverability and IR stealth capability of aircrafts. In this paper, the synthetic suppression scheme of film cooling and low-emissivity coating was adopted on the center body and divergent flaps of the nozzles at 0 deg, 10 deg, and 20 deg vectoring angles. The IR signatures of both the baseline AVEN and the nozzles with IR suppression were measured. Comparing the IR signatures of the nozzles with and without IR suppression measures, the IR suppression effectiveness of the film cooling and low-emissivity coating was obtained. The investigation results indicate that the IR signatures of AVEN decrease with the increase of vectoring angle. The film cooling enables a remarkable decrease of the IR signatures of AVEN. The synthetic suppression of film cooling and low-emissivity coating enables a further decrease of IR signatures. For the case studied in this paper, the integrated radiation intensities of the nozzles with film cooling and low-emissivity coating at 0 deg, 10 deg, and 20 deg vectoring angles are decreased by 52.3%, 57.9%, and 37.2% at 0 deg measurement angle, respectively.

Funder

Aeronautical Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference23 articles.

1. Initial Fight Test Evaluation of the F-15 Active Axisymmetric Vectoring Nozzle Performance,1998

2. Propulsion Flight Research at NASA Dryden From 1967 to 1997,1998

3. Development of the F-22 Propulsion System,2002

4. Aircraft Powerplant and Plume Infrared Signature Modeling and Analysis,2005

5. Aircraft Infrared Principles, Signatures, Threats, and Countermeasures,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3