Sensitivity Analysis of a 2.5kW Proton Exchange Membrane Fuel Cell Stack by Statistical Method

Author:

Rajalakshmi N.1,Velayutham G.1,Dhathathreyan K. S.1

Affiliation:

1. Centre for Fuel Cell Technology, (ARC-International), 120, Mambakkam Main Road, Medavakkam, Chennai 601302, India

Abstract

This paper describes the application of statistical analysis to a 2.5kW proton exchange membrane fuel cell stack operation, by experimental design methodology, whereby robust design conditions were identified for the operation of fuel cell stacks. The function is defined as the relationship between the fuel cell power and the operating pressure and stoichiometry of the reactants. Four types of control factors, namely, the pressures of the fuel and oxidant and the flow rates of the fuel and oxidant, are considered to select the optimized conditions for fuel cell operation. All the four factors have two levels, leading a full factorial design requiring 24 experiments leading to 16 experiments and fractional factorial experiments, 24−1, leading to 8 experiments. The experimental data collected were analyzed by statistical sensitivity analysis by checking the effect of one variable parameter on the other. The mixed interaction between the factors was also considered along with main interaction to explain the model developed using the design of experiments. The robust design condition for maximum fuel cell performance was found to be air flow rate, and the interaction between the air pressure and flow rate compared to all other factors and their interactions. These fractional factorial experiments, presently applied to fuel cell systems, can be extended to other ranges and factors with various levels, with a goal to minimize the variation caused by various factors that influence the fuel cell performance but with less number of trials compared to full factorial experiments.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference18 articles.

1. Fuel Cell Systems Explained

2. Development and Performance of a 10kW PEMFC Stack;Scholta;J. Power Sources

3. Centrifugal Compressor Design Using Simulation Method-Analysis by Purposire Functions;Esue;J. Qual. Eng. Forum

4. Application of Taguchi's Methods to Aero-Engine Engineering Development;Fujimoto;IHI Eng. Rev.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3