Detailed Numerical Comparison of Laminar Burning Speed of Stratified Hydrogen–Air and Methane–Air Mixture With Corresponding Homogeneous Mixture Using Open-Source Code

Author:

Rizvi Mohammad Sadik1

Affiliation:

1. Cummins Inc, Columbus, IN 47203

Abstract

Abstract A detailed numerical study of laminar burning speed for fuel–air mixture is conducted using laminarReactingLMFoam solver which is a modified version of reactingFoam solver based on openfoam code. It accounts for detailed mixture-averaged transport property calculation for reacting flow using low-Mach number governing equations. The effect of various equivalence ratio gradients is studied on stratified hydrogen–air and methane–air mixture with mixture-averaged transport model and unity Lewis number for all species, and corresponding laminar burning speed is compared with homogeneous mixture. For both the fuel–air mixture, rich to lean stratified mixture resulted in a higher laminar burning speed and no significant difference was noticed for lean to rich stratified mixture when compared with homogeneous mixture at same local equivalence ratio. Increased burning speed is explained based on higher burnt gas temperature and molecular diffusion of lighter species from burnt gas referred to “Chemical Effect” in this study. The effect of thermal and molecular diffusion from the burnt gas on laminar burning speed is studied for stratified and homogeneous mixture using mixture-averaged transport model and unity Lewis number for all species. It is shown that the molecular diffusion effect from burnt gas (“Chemical Effect”) is more prominent as compared with the thermal diffusion effect. Extension in lean flammability limit for stratified mixture of both the fuel is shown based on higher heat release rate as compared with homogeneous mixture and extension in flammability limit for stratified mixture is explained based on higher Chemical Effect from burnt gas.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3