Estimation of Resultant Airframe Forces for a Variable Pitch Fan Operating in Reverse Thrust Mode

Author:

Rajendran David John1,Tunstall Richard2,Pachidis Vassilios1

Affiliation:

1. Rolls-Royce UTC, Centre for Propulsion Engineering, Cranfield University , Cranfield, Bedfordshire MK43 0AL, UK

2. Rolls-Royce plc , Bristol BS34 7QE

Abstract

Abstract The resultant forces with a reverse thrust variable pitch fan (VPF) during the aircraft landing run are computed from the installed reverse thrust flow field obtained from an airframe-engine-VPF research model. The research model features a reverse flow capable VPF design in a future, geared, high-bypass ratio 40,000 lbf engine as installed onto a twin-engine airframe in landing configuration, complete with a rolling ground plane to mimic the runway. The reverse thrust flow field during the aircraft landing run is obtained from the three-dimensional RANS/URANS solutions of the model. The evolution of the installed dynamic reverse thrust flow field is characterized by the interaction of the VPF-induced reverse flow with the freestream. Several flow features like reverse flow wash-down by the freestream, external swirling helical flow development, pylon flow obstruction, 180 deg flow turn into the engine, subsequent separated flows, wake interactions, and multipass recirculating flows are observed. The resultant airframe forces due to the reverse thrust flow field are estimated by adaptations of momentum-based far-field and near-field methods. In the active thrust reverser engagement regime of 140 to 40 knots, the VPF generates a sufficient axial airframe decelerating force in the range of 45% to 8% of maximum takeoff thrust. A drag decomposition study and a notional “blocked-fan” analysis are described to understand the stack-up of the axial decelerating force. Additionally, the resultant force has a landing speed-dependent lateral force component because of the pylon obstruction-induced flow nonuniformity. A beneficial downforce component due to upward deflection of streamlines is also observed. The quantification of the resultant forces from the baseline installed airframe-engine-VPF reverse thrust flow field is a necessary step to explore the feasibility of the VPF reverse thrust system for future efficient turbofan architectures, understand force generation mechanisms, and to identify areas for subsequent design improvement.

Funder

Rolls-Royce

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference23 articles.

1. Performance Study for the Benefits of a Variable Pitch Composite Fan,2010

2. An Assessment of Relative Technology Benefits of a Variable Pitch Fan and Variable Area Nozzle,2013

3. Performance Modeling and Optimization Assessment of Variable Pitch Fan for Ultrafan Engine,2018

4. The Ultrafan Engine and Aircraft Based Thrust Reversing,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3