The Microstructural Properties and Tribological Performance of Al2O3 and TiN Nanoparticles Reinforced Ti–6Al–4V Composite Coating Deposited on AISI304 Steel by TIG Cladding

Author:

Kumar Joijode Kiran1,Rao Thella Babu1,Krishna Konjeti Rama2

Affiliation:

1. National Institute of Technology Andhra Pradesh Department of Mechanical Engineering, , Tadepalligudem, West Godavari 534101, Andhra Pradesh , India

2. GITAM School of Technology, Hyderabad Campus, GITAM University Department of Mechanical Engineering, , Hyderabad 502329, Telangana , India

Abstract

Abstract This investigation presents the tribological performance of (Al2O3 + TiN)/Ti6Al4V cladding deposited on AISI304 steel substrate by the tungsten inert gas (TIG) cladding approach. The microstructural characterization by SEM confirmed claddings with visually crack-free and sound metallurgical bonding at the clad layer—substrate interface. The energy dispersive spectroscopy (EDS) analysis revealed the presence of matrix and reinforcement phases as major elements with the clad layer and with considerably no oxidation during their deposition. The XRD spectra revealed that matrix and reinforcements are dominant phases in the clad layer. The formation of compounds reflected considerably a lower dilution of reinforcement phase with Ti6Al4V matrix during melting and deposition. Higher the microhardness of the (Al2O3 + TiN)/Ti6Al4V clad layer in the cladding zone compared with other clad layer compositions such as Ti6Al4V, Al2O3/Ti6Al4V, and TiN/Ti6Al4V, it is varied from 1130HV0.2 to 1222HV0.2, and the average microhardness is about 990.57HV0.2 which is 175% improvement compared with the substrate. The cladding with dual reinforcement composition has shown a superior wear resistance compared with all other clad layer composite compositions. The improvement in the wear resistance achieved with (Al2O3 + TiN)/Ti6Al4V composite clad layer deposition at 2.5 m/s, 3.5 m/s, and 4.5 m/s sliding velocities is 56.60%, 63.26%, and 68.53%, respectively, compared with the substrate. The wear morphology of the composite claddings is relatively smoother and the wear furrows are shallower compared with the substrate, especially for the composite clad layer with (Al2O3 + TiN) reinforcement phase.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3