The Effect of Surface Motion on Forced Convection Film Boiling Heat Transfer

Author:

Zumbrunnen D. A.1,Viskanta R.1,Incropera F. P.1

Affiliation:

1. Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

The growth in demand for high-quality metallic alloys has placed greater emphasis on the predictability of cooling methods used in manufacturing processes. Several methods involve forced convection film boiling, which can occur on metallic strips or plates cooled by water jet impingement or on strips inside cooling jackets of continuous annealing processes. Since surface temperatures are typically well above the boiling point of water, a substantial portion of the surface area can involve film boiling. The strip or plate speed often exceeds the water velocities and strongly influences boundary layer development in the vapor and liquid. The purpose of this paper is to estimate the effect of plate motion on heat transfer in the film boiling regime. Conservation equations for mass, momentum, and energy have been solved by the integral method for film boiling in forced convection boundary layer flow on a flat isothermal plate in motion parallel to the flow direction. Unlike previous studies, which have shown that heat transfer is chiefly governed by the plate and subcooled liquid temperatures, heat transfer is shown to also depend on the plate velocity. For large velocities, the importance of radiation heat transfer across the vapor layer is reduced. However, when the velocities of the plate and liquid are oppositely directed and of nearly equal magnitude, radiation across the vapor layer can become significant, even at low plate temperatures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3