Predicting Viscosities of Heavy Oils and Solvent–Heavy Oil Mixtures Using Artificial Neural Networks

Author:

Chen Zehua1,Yang Daoyong2

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

Abstract

Abstract This study investigates the potential of artificial neural networks (ANNs) to accurately predict viscosities of heavy oils (HOs) as well as mixtures of solvents and heavy oils (S–HOs). The study uses experimental data collected from the public domain for HO viscosities (involving 20 HOs and 568 data points) and S–HO mixture viscosities (involving 12 solvents and 4057 data points) for a wide range of temperatures, pressures, and mass fractions. The natural logarithm of viscosity (instead of viscosity itself) is used as predictor and response variables for the ANNs to significantly improve model performance. Gaps in HO viscosity data (with respect to pressure or temperature) are filled using either the existing correlations or ANN models that innovatively use viscosity ratios from the available data. HO viscosities and mixture viscosities (weight-based, molar-based, and volume-based) from the trained ANN models are found to be more accurate than those from commonly used empirical correlations and mixing rules. The trained ANN model also fares well for another dataset of condensate-diluted HOs.

Funder

China University of Petroleum

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3