Flow and Heat Transfer Characteristics in Latticework Cooling Channels With Dimple Vortex Generators

Author:

Rao Yu1,Zang Shusheng2

Affiliation:

1. e-mail:

2. Institute of Turbomachinery, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China

Abstract

A comparative experimental and numerical study has been conducted on the flow and heat transfer characteristics in a latticework cooling channel with U-shaped subchannels combined with dimple vortex generators over the Reynolds number range of 7700–36,985. The average Nusselt number and friction factor of the latticework channel have been obtained. The comparisons between the experimental and numerical data have shown that the numerical computation model can reasonably well predict the heat transfer and pressure loss in the latticework cooling channels. Additional numerical computations were further performed to investigate the effects of subchannel configurations on the flow and heat transfer in the latticework channel, and three different subchannel configurations were studied, which are the dimpled U subchannel, U subchannel, and rectangular subchannel. The experimental data of the heat transfer and pressure loss of the latticework channel with dimpled U subchannels have also been compared with those of the ribbed channels and pin fin channel from the literature. The present study indicated that the superior heat transfer enhancement capability of the latticework cooling is mainly due to the remarkably increased heat transfer area, turning effects producing strong vortical flow in the subchannels, and the interactions between the flow in the crossing subchannels, as well as the interactions between the flow and the crossing ribs on the opposite side.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Turbine Blade Internal Cooling Passages With Rib Turbulator;AIAA J. Propul. Power,2006

2. A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Application;ASME J. Turbomach.,1988

3. Recent Advances in Turbine Heat Transfer—With a View of Transition to Coal-Gas Based Systems;ASME J. Heat Transfer,2012

4. Jet-Impingement Heat Transfer in Gas Turbine Systems;Ann. N.Y. Acad. Sci.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3