Modeling of Quasistatic Thermoviscoelastic Frictional Contact Problems

Author:

El-Shafei Ahmed G.1

Affiliation:

1. Department of Mechanical Design and Production, College of Engineering, Zagazig University, Zagazig, 44511, Egypt

Abstract

Frictional contacts of thermoviscoelastic bodies are complicated nonlinear temperature- and time-dependent problems. The introduction of friction with its irreversible character makes the problem more difficult. Additionally, the consideration of temperature, as an independent variable, destroys the convolution integral form of the viscoelasticity constitutive relations. This paper presents a computational model capable of predicting the nonlinear quasistatic response of uncoupled thermoviscoelastic frictional contact problems. The contact problem, as a variational inequality constrained model, is handled by using the Lagrange multiplier method to incorporate the inequality contact constraints. A local nonlinear friction law is adapted to model friction at the contact interface. This, in turn, eliminates difficulties that arise with the application of the classical friction laws. The temperature-dependency of viscoelasticity is modeled by applying the time-temperature superposition principle. The constitutive equations are transformed to be a function of the reduced time as the only independent variable, maintaining the convolution integral form. Two different illustrative examples are presented to demonstrate the applicability of the proposed model to analyze both nonconformal and conformal thermoviscoelastic frictional contact problems.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3