Affiliation:
1. Heat Transfer Laboratory, University of Minnesota, Minneapolis, Minn.
Abstract
A theory has been devised for predicting condensation heat transfer in the presence of a noncondensable gas. The analysis is based on the conservation laws alone and does not utilize empirical data. It is shown that the presence of a very small amount of noncondensable gas in the bulk of the vapor can cause a large buildup of the noncondensable at the liquid-vapor interface. A consequence of this buildup is that the partial pressure of the vapor at the interface is reduced. This, in turn, lowers the temperature at which the vapor condenses and diminishes the effective thermal driving force. Heat-transfer reductions of well over fifty percent may be brought about by the presence of the noncondensable. The predictions of the analysis are compared with condensation heat-transfer measurements for steam with air as noncondensable. The agreement between theory and experiment is satisfactory.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
154 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献