Finite Element Analysis of Bent Rotors

Author:

Juethner Konrad1,Rose Ted1,Kumar J. S.1,Cao Jianming1,Savela Gregory M.2,Zuck Chris J.2,Mathuria Parag H.2

Affiliation:

1. MSC Software Corp., Part of Hexagon , Irvine, CA 92617

2. Engine Dynamics & Loads Pratt & Whitney , East Hartford, CT 06118

Abstract

Abstract The rotating components of a gas turbine engine are typically designed around a perfectly straight centerline. In spite of advanced manufacturing technology and the conviction of the human eye, straightness is virtually impossible to achieve during manufacturing and assembly. High-tech metrology can quantify ever so slight centerline deviations along the unconstrained rotor assembly which are called bends. Related phenomena are rotor bow and thermal bow, the latter of which is normally due to asymmetric cooling after engine shutdown. Yet, bent and bowed rotors differ from one another in that bends are permanent deviations from the centerline of the unconstrained rotor, whereas rotor bow is temporary, typically elastic, and observed in the mounted, and, therefore, constrained rotor assembly. Greater complexity is introduced with the realization that a bent rotor can additionally be subject to rotor bow. The presence of bends leads to force and moment distributions along the rotating structure that can have significant dynamic implications for even very small bends. In opposition to unbalance loads, which increase with rotor speed, the rotating excitation of a bent rotor remains constant. The equations of motion (EOM) of a bent rotor are well defined in the literature. However, the analysis is usually confined to simplified cases where said centerline deviations at the bearing supports are zero. For realistic rotor applications, this is not the case and additional static analysis is required to obtain the proper dynamic load distribution along the rotor. In this paper, the finite element method (FEM) is used to analyze bent rotors within an MSC NASTRAN v2021 work-flow that can address rotor models of any complexity. The proposed approach can also account for static, compliant, and greatly featured support structures that communicate with the rotor model via its common, and potentially misaligned, bearing supports. Angular and lateral offsets are explored in three different scenarios of two rotor configurations: scenarios 1 and 2 introduce a simply bent rotor, along which synchronous force and moment distributions are computed (due to its intrinsic deviations) to subsequently excite the bent rotor dynamically. While scenario 1 requires an initial static analysis with enforced displacements to accomplish this task, the equivalent dynamic excitation of scenario 2 can be computed directly due to perfect bearing alignment. In scenario 3, the complexity of the rotor bend is increased to four angular kinks and four lateral offsets to suggest the deployment of this method in combination with high-tech metrology equipment that can produce a large number of such measurements via automated probing or scanning technologies. In a final step, the bent rotor is augmented with unbalances and compared to its nominal counterpart to deliver the motivation for this method and its value to the turbomachinery community. All results of scenarios 1, 2, and 3 are verified against an experimentally validated transfer matrix method (TMM).

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference10 articles.

1. A New Computational Method for Predicting the Thermal Bow of a Rotor;Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.,2018

2. Dynamic Analysis of Bowed Rotors,2000

3. The Identification of a Rotor Bend From Vibration Measurements,1998

4. Modeling of Rotor Bow During Hot Restart in Centrifugal Compressors,2010

5. Response of a Warped Flexible Rotor With a Fluid Bearing;Int. J. Rotating Mach.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3