Quantifying Individual Losses in a Direct Methanol Fuel Cell

Author:

García-Díaz Brenda L.1,Patterson Jennifer R.1,Weidner John W.1

Affiliation:

1. Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208

Abstract

Studying the performance of a direct methanol fuel cell (DMFC) is complicated by the complex interactions of kinetic and transport processes. As a result, changes in one aspect of the cell have consequences in other aspects, which are difficult to elucidate from full-cell polarization (i.e., voltage versus current) behavior. This study outlines a strategy to use current and voltage relationships from anode half-cells, cathode half-cells, and hydrogen pump coupled with methanol crossover data and a mathematical model. In this way, all the kinetic and transport processes have been quantified, and the cell voltage was deconstructed (i.e., individual voltage losses were quantified). This data analysis accounts for all of the voltage losses observed during the operation of the full cell. As expected, the anode and cathode overpotentials accounted for most of the losses (i.e., 92% on average). Also, the cathode flow rate has been shown to affect the methanol crossover by diffusion. Cells operated at constant stoichiometry or where the cathode flow rate is small can show a parabolic shape in the methanol crossover because the electroosmotic drag dominates over diffusion as the primary transport mechanism for methanol through the membrane. Decrease in the methanol crossover was observed for cells with high compression and thicker cathode electrodes. The one-dimensional model, developed previously (García et al., 2004, “Mathematical Model of a Direct Methanol Fuel Cell,” J. Fuel Cell Sci. Technol., 1(1), pp. 43–48), was improved by: (1) including methanol transport from the anode flow channel to the backing layer using a mass transfer resistance and (2) accounting for the unreacted methanol transport through the cathode. The model was able to reasonably predict the anode, cathode, full-cell polarization, and methanol crossover data for methanol concentrations between 0.05 M and 2 M at all operating currents.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3