Flow Characteristics in a Curved Rectangular Channel With Variable Cross-Sectional Area

Author:

Bhunia Avijit1,Chen C. L.1

Affiliation:

1. Teledyne Scientific Company, 1049 Camino Dos Rios, MC A10, Thousand Oaks, CA 91360

Abstract

Abstract Laminar air flow through a curved rectangular channel with a variable cross-sectional (c/s) area (diverging-converging channel) is computationally investigated. Such a flow passage is formed between the two fin walls of a 90 deg bend curved fin heat sink, used in avionics cooling. Simulations are carried out for two different configurations: (a) a curved channel with long, straight, constant c/s area inlet and outlet sections (entry and exit lengths); and (b) a short, curved channel with no entry and exit lengths. Formation of a complex 3D flow pattern and its evolution in space is studied through numerical flow visualization. Results show that a secondary motion sets in the radial direction of the curved section, which in combination with the axial (bulk) flow leads to the formation of a base vortex. In addition, under certain circumstances the axial and secondary flow separate from multiple locations on the channel walls, creating Dean vortices and separation bubbles. Velocity above which the Dean vortices appear is cast in dimensionless form as the critical Dean number, which is calculated to be 129. Investigation of the friction factor reveals that pressure drop in the channel is governed by both the curvature effect as well as the area expansion effect. For a short curved channel where area expansion effect dominates, pressure drop for developing flow can be even less than that of a straight channel. A comparison with the flow in a constant c/s area, curved channel shows that the variable c/s area channel geometry leads to a lower critical Dean number and friction factor.

Publisher

ASME International

Subject

Mechanical Engineering

Reference16 articles.

1. Enhanced Air Cooling for Electronic Equipment;Garimella

2. Carter, D. P., Crocker, M. T., Broili, B. M., Byquist, T. A., and Llapitan, D. J., 2003, “Electronics Assemblies With High Capacity Curved Fin Heat Sinks,” U.S. Patent No. 6,671,172.

3. Taylor Goertler Vortices and Their Effect on Heat Transfer;McCormack;ASME J. Heat Transfer

4. Fluid Motion in a Curved Channel;Dean;Proc. R. Soc. London, Ser. A

5. Effect of Finite and Infinite Aspect Ratios on Flow Patterns in Curved Rectangular Channels;Cheng

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3