Robot Workspace of a Tool Plane: Part 2—Computer Generation and Selected Design Conditions for Dexterity

Author:

Davidson J. K.1,Pingali P.2

Affiliation:

1. Department of Mechanical Engineering, Arizona State University, Tempe, AZ 85287

2. Intergraph Corp., Huntsville, AL

Abstract

In this paper the algorithm is completed for generation of envelope-surfaces for plane-workspaces of generally proportioned manipulators. Then the ruled surface Ψ is used for adapting the algorithm to 3-R manipulators for which the outermost two axes intersect (a2 = 0). The discriminant D is further developed, and it is used to classify 3-R manipulators, having a2 = 0, into seven Types. Manipulators, which are of Type 7, (i) can provide any orientation to a tool plane σ or (ii), with a fourth appropriately placed R joint and tool plane Σ, can also provide any attitude to the end effector. Design conditions are developed and presented which ensure that a manipulator will possess these properties of dexterity. The conditions are based on coupled motions at all three, or four, axes.

Publisher

ASME International

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orientation capability of planar manipulators using virtual joint angle analysis;Mechanism and Machine Theory;2003-03

2. Orientation capability representation and application to manipulator analysis and synthesis;Robotica;2002-09

3. Characterizing Slop in Mechanical Assemblies Via Differential Geometry;Journal of Computing and Information Science in Engineering;2002-09-01

4. Orientation capability of planar serial manipulators using rotatability analysis based on workspace decomposition;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2002-03-01

5. Finite Twist Mapping and its Application to Planar Serial Manipulators with Revolute Joints;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;1995-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3