Optimization of Carbon Black Polymer Composite Microstructure for Rupture Resistance

Author:

San Bingbing12,Waisman Haim3

Affiliation:

1. Associate Professor College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;

2. Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027 e-mail:

3. Associate Professor Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027 e-mail:

Abstract

Optimization of material microstructure is strongly tied with the performance of composite materials at the macroscale and can be used to control desired macroscopic properties. In this paper, we study the optimal location of carbon black (CB) particle inclusions in a natural rubber (NR) matrix with the objective to maximize the rupture resistance of such polymer composites. Hyperelasticity is used to model the rubber matrix and stiff inclusions, and the phase field method is used to model the fracture accounting for large deformation kinematics. A genetic algorithm is employed to solve the inverse problem in which three parameters are proposed as optimization objective, including maximum peak force, maximum deformation at failure-point, and maximum fracture energy at failure-point. Two kinds of optimization variables, continuous and discrete variables, are adopted to describe the location of particles, and several numerical examples are carried out to provide insight into the optimal locations for different objectives.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3