The Influence of a Variable Normal Load on the Forced Vibration of a Frictionally Damped Structure

Author:

Menq C.-H.1,Griffin J. H.1,Bielak J.1

Affiliation:

1. Carnegie Institute of Technology, Carnegie-Mellon University, Pittsburgh, PA 15213

Abstract

An approximate procedure is developed for calculating the steady-state response of frictionally damped structures for which the normal load across the friction interface consists of a constant force and a force that varies linearly with the vibratory displacement. Such situations occur quite frequently in practice, as, for example; in the case of shrouded fan blades or in certain types of turbine-blade friction dampers. Depending on the magnitudes of the constant and the variable normal loads, the friction element will either stick, slip, or lift off at various intervals during a cycle of oscillation. The various possibilities are considered in the present study. Results from the approximate method are compared with “long-time” solutions obtained from a conventional transient analysis of the problem in order to assess the accuracy of the proposed procedure. As an application, the new method is then used to study the influence of the dynamic coupling on the optimization of the friction force in turbine blade dampers. Results show that the optimum friction force and the maximum amplitude of the response increase with dynamic coupling.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3