In-Plane Bending of a Short-Radius Curved Pipe Bend

Author:

Jones N.1

Affiliation:

1. Division of Engineering, Brown University, Providence, R. I.

Abstract

The analysis developed in this article is a logical extension, or generalization, of Von Karman’s original theory [1] on curved pipe bends. It can be shown, for long-radius pipe bends which have a negligible shift of the neutral axis, that the solution presented here reduces to that of Von Karman. It is evident from the results of this analysis that the stresses in and flexibility of curved pipe bends are virtually independent of γ(a/ρ) (even for γ approaching unity) and depend almost entirely on the simple Von Karman pipe factor λ(tρ/a2). Errors arising from premature truncation of the selected power series for the radial displacement are discussed, and a guide given to the number of terms necessary for a particular problem.

Publisher

ASME International

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Reissner’s Equations of Finite Pure Bending of Curved Elastic Tubes;Journal of Applied Mechanics;2013-10-16

2. Elastostatic analysis of problems involving complex toroidal geometries;The Journal of Strain Analysis for Engineering Design;1987-10-01

3. References1 1Ordered chronologically; for a publication year, alphabetically.;Theory of Flexible Shells;1987

4. Elastic tubes—Assumptions, equations, edge conditions;Thin-Walled Structures;1985-01

5. An elasto-plastic elbow element—Theory and applications;International Journal of Pressure Vessels and Piping;1980-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3