Photoelectrochemical Study of the Delafossite AgNiO2 Nanostructure: Application to Hydrogen Production

Author:

Bagtache R.1,Brahimi R.2,Mahroua O.2,Boudjellal L.2,Abdmeziem K.1,Trari M.2

Affiliation:

1. Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111 Algiers, Algeria

2. Laboratory of Storage and Valorisation of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, 16111c Algiers, Algeria

Abstract

Abstract AgNiO2 is a semiconductor crystallizing in the delafossite structure; it is prepared by the hydrothermal route, and the photoelectrochemical properties are studied for the first time. The TG/DSC analyses show a low stability not exceeding 290 °C before its reduction into Ag and NiO. The direct bandgap energy of the bulk material is 0.87 eV, due to the d–d transition of Ag+ linearly coordinated. AgNiO2 is chemically stable in the pH region (4–14); a flat band potential of −0.022 VRHE with p-type behavior, inferred to oxygen insertion is reported in KOH solution (10−2 M). The holes density (1.92 × 1022 cm−3) agrees with a semi-metallic behavior. Positive potentials give rise to surface oxidation of AgNiO2 in the diffusion plateau before oxygen evolution. The electrochemical oxygen insertion, investigated by chrono-amperometry, is found to be slow with a diffusion coefficient of ∼8 × 10−16 cm2 s−1. The Nyquist plot exhibits a semicircle centered below the abscissa axis, whose diameter 4200 Ω cm2 decreases down to 760 Ω cm2 under visible illumination. Such results indicate dipolar and multi-relaxation processes and confirm the existence of the optical gap. The conduction band (−0.88 VRHE) derived from Ag+: 4d orbital is more cathodic than the potential of H2O/H2 (∼−0.64 VRHE) level and hydrogen is evolved under visible irradiation. An evolution rate of 1.43 mL g−1 min−1 at pH ∼ 12.8 is obtained with a light-to-chemical energy efficiency of 2.40%.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3