Low-Frequency Regenerative Vibration and the Formation of Lobed Holes in Drilling

Author:

Bayly Philip V.1,Lamar Michael T.1,Calvert Sean G.1

Affiliation:

1. Mechanical Engineering, Box 1185, Washington University, 1 Brookings Drive, St. Louis, MO 63130

Abstract

Large-amplitude vibrations in drilling often occur at frequencies near multiples of the rotation frequency, even when these are much lower than the system’s first natural frequency. These vibrations are responsible for out-of-round, “lobed” holes. A simplified model of the mechanics of this phenomenon is presented in this paper. The model includes cutting and “rubbing” forces on the drill, but inertia and damping of the tool are neglected at low speeds. This quasi-static model remains dynamic because of the regenerative nature of cutting; the force on each cutting element depends on both the tool’s current position and its position at the time of the previous tooth passage. Characteristic solutions, including unstable retrograde “whirling” modes, are found in terms of eigenvalues and eigenvectors of a discrete state-transition matrix. These unstable modes correspond closely to behavior observed in drilling tests.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical and experimental analysis of margin geometries of twist drills in deep hole machining operations;Advances in Industrial and Manufacturing Engineering;2023-05

2. Research on machining technology of complex structure parts of high-speed train body;Journal of Physics: Conference Series;2021-01-01

3. High precision machining device for large-scale key parts of aluminum alloy;Journal of Physics: Conference Series;2021-01-01

4. Uncertainty evaluation for twist drilling stability model;Precision Engineering;2020-11

5. Lateral Vibrations in Deep Hole Drilling Due to Land Width Variation;Journal of Manufacturing and Materials Processing;2020-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3