Design and Analysis of Laminates for Self-Deployment of Viscoelastic Bistable Tape Springs After Long-Term Stowage

Author:

Mao Huina1,Shipsha Anton1,Tibert Gunnar1

Affiliation:

1. Department of Aeronautical and Vehicle Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden e-mail:

Abstract

Bistable tape springs are ultrathin fiber-reinforced polymer composites, which could self-deploy through releasing stored strain energy. Strain energy relaxation is observed after long-term stowage of bistable tape springs due to viscoelastic effects and the tape springs might lose their self-deployment abilities. In order to mitigate the viscoelastic effects and thus ensure self-deployment, different tape springs were designed, manufactured, and tested. Deployment experiments show that a four-layer, [−45/0/90/45], plain weave glass fiber tape spring has a high capability to mitigate the strain energy relaxation effects to ensure self-deployment after long-term stowage in a coiled configuration. The two inner layers increase the deployment force and the outer layers are used to generate the bistability. The presented four-layer tape spring can self-deploy after more than six months of stowage at room temperature. A numerical model was used to assess the long-term stowage effects on the deployment capability of bistable tape springs. The experiments and modeling results show that the viscoelastic strain energy relaxation starts after only a few minutes after coiling. The relaxation shear stiffness decreases as the shear strain increases and is further reduced by strain energy relaxation when a constant shear strain is applied. The numerical model and experiments could be applied in design to predict the deployment force of other types of tape springs with viscoelastic and friction effects included.

Funder

Seventh Framework Programme

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3