Modeling of Surface Modified Layers in the Presence of Surface Irregularities

Author:

Gupta Vikas1,Hahn George T.2,Bastias Pedro2,Rubin Carol A.2

Affiliation:

1. EASi Engineering, Bingham Farms, MI 48034

2. Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235

Abstract

Finite element calculations that examine the effects of surface modification on the deformation produced by pure rolling contact are presented. The model simulates the repeated, two-dimensional (line) contact of a cylinder that is rolling over a semi-infinite half space. The half space is treated as an elastic-linear-kinematic-hardening-plastic (ELKP) material with the cyclic flow properties of a hardened, HRC-62, bearing steel. Two different cases are examined: (i) a smooth half space is studied using a one-body model, and (ii) a half space with a 100 μm wide and 7 μm deep surface asperity is studied using a two-body model. In both cases, calculations are performed for a homogeneous body and a body with a shallow, surface modified layer. The surface modified layer is alternately: (a) stiffer, (b) harder, (c) softer, and (d) harder and stiffer as compared to the substrate. Consistent with the earlier studies of surface modification (Bhargava, 1987), the present findings indicate that the benefits of the mechanical property modifications are confined to the altered layer itself. This may explain the improvement in performance realized by relatively thin modified layers (≈5 μm).

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference14 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3