Design Tool for Topology Optimization of Self Supporting Variable Density Lattice Structures for Additive Manufacturing

Author:

McConaha Matthew1,Venugopal Vysakh1,Anand Sam1

Affiliation:

1. Center for Global Design and Manufacturing, Department of Mechanical and, Materials Engineering, University of Cincinnati, Cincinnati, OH 45221

Abstract

Abstract Additive manufacturing (AM) allows for the inclusion of complicated geometric features that are impractical or impossible to manufacture by other means. Among such features is the collection of intricate and periodic strut-like geometries known as lattice structures. Lattice structures are desirable for their ability to provide stiffness through a large number of supporting members while employing void space within the geometry as a means to reduce part material volume. Strut thicknesses of every lattice in a part are generally not well optimized in order to maximize part stiffness, and often every lattice unit cell is identical throughout the part. This work presents a lattice density optimization methodology that is able to find the optimal graded lattice density distribution for maximizing the part stiffness and also improving the additive manufacturability of the part. The material property interpolation scheme used in SIMP optimization is replaced by a representative volume element (RVE)-based interpolation scheme that more accurately captures the material properties of the prescribed lattice structure at an arbitrary density. A filter has been developed that allows for trimming of unnecessary lattices while simultaneously ensuring that the geometry remains self-supporting during the AM build process. This filter is incorporated seamlessly within the topology optimization routine. This increases the optimality of the resulting design when compared with full-domain lattice filling and increases the viability of the design from a manufacturing standpoint when compared with unconstrained lattice trimming.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference38 articles.

1. Computer-Aided Design for Additive Manufacturing of Cellular Structures;Rosen;Comput.-Aided Des. Appl.,2007

2. Design and Additive Manufacturing of Cellular Lattice Structures;Hao

3. Advanced Lattice Support Structures for Metal Additive Manufacturing;Hussein;J. Mater. Process. Technol.,2013

4. Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting;Yan;Int. J. Mach. Tools Manuf.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3