Utilizing a Cycle Simulation to Examine the Use of EGR for a Spark-Ignition Engine Including the Second Law of Thermodynamics

Author:

Caton Jerald A.1

Affiliation:

1. Texas A&M University, College Station, TX

Abstract

The use of exhaust gas recirculation (EGR) for a spark-ignition engine was examined using a thermodynamic cycle simulation including the second law of thermodynamics. Both a cooled and an adiabatic EGR configuration were considered. The engine was a 5.7 liter, automotive engine operating from idle to wide open throttle, and up to 6000 rpm. First, the reduction of nitric oxides is quantified for the base case condition (bmep = 325 kPa, 1400 rpm, φ = 1.0 and MBT timing). Over 90% reduction of nitric oxides is obtained with about 18% EGR for the cooled configuration, and with about 26% EGR for the adiabatic configuration. For constant load and speed, the thermal efficiencies increase with increasing EGR for both configurations, and the results show that this increase is mainly due to decreasing pumping losses and decreasing heat losses. In addition, results from the second law of thermodynamics indicated an increase in the destruction of availability (exergy) during the combustion process as EGR levels increase for both configurations. The major reason for this increase in the destruction of availability was the decrease in the combustion temperatures. Complete results for the availability destruction are provided for both configurations.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3