Modeling the Effects of Using Gas Diffusion Layers With Patterned Wettability for Advanced Water Management in Proton Exchange Membrane Fuel Cells

Author:

Dujc Jaka1,Forner-Cuenca Antoni2,Marmet Philip1,Cochet Magali2,Vetter Roman1,Schumacher Jürgen O.3,Boillat Pierre4

Affiliation:

1. Institute of Computational Physics (ICP), Zurich University of Applied Sciences (ZHAW), Winterthur 8401, Switzerland

2. Electrochemistry Laboratory (LEC), Paul Scherrer Institute, Villigen PSI 5232, Switzerland

3. Institute of Computational Physics (ICP), Zurich University of Applied Sciences (ZHAW), Winterthur 8401, Switzerland e-mail:

4. Electrochemistry Laboratory (LEC), Neutron Imaging and Activation Group (NIAG), Paul Scherrer Institute, Villigen PSI 5232, Switzerland

Abstract

We present a macrohomogeneous two-phase model of a proton exchange membrane fuel cell (PEMFC). The model takes into account the mechanical compression of the gas diffusion layer (GDL), the two-phase flow of water, the transport of the gas species, and the electrochemical reaction of the reactant gases. The model was used to simulate the behavior of a PEMFC with a patterned GDL. The results of the reduced model, which considers only the mechanical compression and the two-phase flow, are compared to the experimental ex-situ imbibition data obtained by neutron radiography imaging. The results are in good agreement. Additionally, by using all model features, a simulation of an operating fuel cell has been performed to study the intricate couplings in an operating fuel cell and to examine the patterned GDL effects. The model confirms that the patterned GDL design liberates the predefined domains from liquid water and thus locally increases the oxygen diffusivity.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Kommission für Technologie und Innovation

Bundesamt für Energie

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3