Set-Point Adaptation Strategy of Air Systems of Light-Duty Diesel Engines for NOx Emission Reduction Under Acceleration Conditions

Author:

Min Kyunghan1,Kim Haksu1,Han Manbae2,Sunwoo Myoungho3

Affiliation:

1. Department of Automotive Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea e-mail:

2. Professor Department of Mechanical and Automotive Engineering, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, South Korea e-mail:

3. Professor Department of Automotive Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea e-mail:

Abstract

Modern diesel engines equip the exhaust gas recirculation (EGR) system because it can suppress NOx emissions effectively. However, since a large amount of exhaust gas might cause the degradation of drivability, the control strategy of EGR system is crucial. The conventional control structure of the EGR system uses the mass air flow (MAF) as a control indicator, and its set-point is determined from the well-calibrated look-up table (LUT). However, this control structure cannot guarantee the optimal engine performance during acceleration operating conditions because the MAF set-point is calibrated at steady operating conditions. In order to optimize the engine performance with regard to NOx emission and drivability, an optimization algorithm in a function of the intake oxygen fraction (IOF) is proposed because the IOF directly affects the combustion and engine emissions. Using the NOx and drivability models, the cost function for the performance optimization is designed and the optimal value of the IOF is determined. Then, the MAF set-point is adjusted to trace the optimal IOF under engine acceleration conditions. The proposed algorithm is validated through scheduled engine speeds and loads to simulate the extra-urban driving cycle of the European driving cycle. As validation results, the MAF is controlled to trace the optimal IOF from the optimization method. Consequently, the NOx emission is substantially reduced during acceleration operating conditions without the degradation of drivability.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3