Manufacturing Influences on Pressure Losses of Channel Fed Holes

Author:

Barringer Michael,Thole Karen A.1,Krishnan Vaidyanathan2,Landrum Evan3

Affiliation:

1. Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802

2. Corporate Technology, Chennai, Tamilnadu 600113,India

3. Siemens Energy, Inc., Orlando, FL 32817

Abstract

Variations from manufacturing can influence the overall pressure drop and subsequent flow rates through supply holes in such applications as film-cooling, transpiration cooling, and impingement cooling that are supplied by microchannels, pipe-flow systems, or secondary air systems. The inability to accurately predict flow rates has profound effects on engine operations. The objective of this study was to investigate the influence of several relevant manufacturing features that might occur for a cooling supply hole being fed by a range of channel configurations. The manufacturing variances included the ratio of the hole diameter to the channel width, the number of channel feeds (segments), the effect of hole overlap with respect to the channel sidewalls, and the channel Reynolds number. The results showed that the friction factors for the typically long channels in this study were independent of the tested inlet and exit hole configurations. The results also showed that the nondimensional pressure loss coefficients for the flow passing through the channel inlet holes and through the channel exit holes were found to be independent of the channel flow Reynolds number over the tested range. The geometric scaling ratio of the hole cross-sectional area to the channel cross-sectional area collapsed the pressure loss coefficients the best for both one and two flow segments for both the channel inlet and channel exit hole.

Publisher

ASME International

Subject

Mechanical Engineering

Reference11 articles.

1. Internal Flow Systems,1978

2. Discharge Coefficient of Turbine Cooling Holes: A Review;ASME J. Turbomach.,1998

3. Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation;ASME J. Turbomach.,2001

4. An Improved Method for Accurate Prediction of Mass Flow Through Combustion Liner Holes;ASME J. Eng. Gas Turbines Power,1986

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3