Active Subspace Development of Integrally Bladed Disk Dynamic Properties Due to Manufacturing Variations

Author:

Beck Joseph A.1,Brown Jeffrey M.2,Kaszynski Alex A.3,Carper Emily B.2

Affiliation:

1. Perceptive Engineering Analytics, LLC, Minneapolis, MN 55418 e-mail:

2. AFRL/RQTI, Wright-Patterson AFB, OH 45433 e-mail:

3. Advanced Engineering Solutions, Dayton, OH 45432 e-mail:

Abstract

The impact of geometry variations on integrally bladed disk eigenvalues is investigated. A large population of industrial bladed disks (blisks) are scanned via a structured light optical scanner to provide as-measured geometries in the form of point-cloud data. The point cloud data are transformed using principal component (PC) analysis that results in a Pareto of PCs. The PCs are used as inputs to predict the variation in a blisk's eigenvalues due to geometry variations from nominal when all blades have the same deviations. A large subset of the PCs is retained to represent the geometry variation, which proves challenging in probabilistic analyses because of the curse of dimensionality. To overcome this, the dimensionality of the problem is reduced by computing an active subspace that describes critical directions in the PC input space. Active variables in this subspace are then fit with a surrogate model of a blisk's eigenvalues. This surrogate can be sampled efficiently with the large subset of PCs retained in the active subspace formulation to yield a predicted distribution in eigenvalues. The ability of building an active subspace mapping PC coefficient to eigenvalues is demonstrated. Results indicate that exploitation of the active subspace is capable of capturing eigenvalue variation.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3