Numerical Study on NOx Reduction in Pulse Detonation Combustion by Using Steam Injection Decoupled From Detonation Development

Author:

Hanraths Niclas1,Tolkmitt Fabian2,Berndt Phillip3,Djordjevic Neda4

Affiliation:

1. Chair of Combustion Kinetics, Technische Universität, Berlin 10623, Germany

2. Chair of Combustion Kinetics,Technische Universität, Berlin 10623, Germany

3. Freie Universität, Berlin 14195, Germany

4. Technische Universität, Berlin 10623, Germany

Abstract

Recently, the focus has been laid on the characteristics of pollutant emissions from pulse detonation combustion (PDC). Initial studies indicate possibly high nitrogen oxides (NOx) emissions, so the assessment of potential primary reduction methods is advisable. The present work considers the following reduction methods: lean combustion, nitrogen and steam dilution, as well as flue gas recirculation. Since such changes in the combustion mixture reduce its reactivity and thus detonability, they can impair a reliable operation in technical systems. In order to explore the potential and limitations of each of these reduction methods, they are compared for mixtures featuring an identical characteristic detonation cell size at given initial conditions. Furthermore, building upon the use of steam dilution, a modified method to add steam to the combustible mixture is investigated. In order to avoid the strong reduction of mixture detonability by steam addition and ensure a robust detonation formation, steam is injected into the already developed detonation front. It was found that, for sufficiently even steam distribution, NOx reduction comparable to a premixed dilution could be achieved. This approach enables the realization of NOx reduction in PDC also for such conditions, for which premix dilution is not feasible. Therefore, combining the premix dilution with postshock injection offers a promising strategy to substantially reduce NOx emissions from PDC, while at the same time ensuring its reliable operation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3