Stability and Unbalance Analysis of Rigid Rotors Supported by Spiral Groove Bearings: Comparison of Different Approaches

Author:

Iseli Elia1,Schiffmann Jurg2

Affiliation:

1. Fischer Spindle AG, Ernst Fischer-Weg 5, 3360 Herzogenbuchsee, Switzerland

2. Ecole Polytechnique Fédérale Lausanne, EPFL STI IGM LAMD, Maladière 71b, CP526, CH-2002 Neuchâtel 2, Switzerland

Abstract

Abstract The dynamic behavior of spiral-grooved gas bearing supported 4DoF rotors is investigated by means of linearized bearing force coefficients and full time-integrated transient analysis. The two methods are compared for a variation of test rotors and bearing geometries in a given compressibility number interval of Lambda = [0,40]. The limitations and weaknesses of the linearized model are presented. It is shown that shafts with two symmetric herringbone-groove journal bearings have their maximum stability and load capacity if the center of gravity lays in the middle of the two bearings. For symmetric rotors (la/lb = 1) the two rigid modes, cylindrical and conical, are present and are influenced by the mass and transverse moment of inertia independently. For asymmetric rotors (la/lb < 1) the stability region decreases and the modes have a mixed shape. It is no longer possible to clearly distinguish between pure cylindrical and pure conical mode shapes. The two methods predict the critical mass and critical transverse moment of inertias within a difference of < 7%. A quasi-linear unbalance module for rigid gas bearing supported rotors is presented, which considers eccentricity dependent bearing force coefficients, allowing to speed up the unbalance response analysis by four orders of magnitude. The unbalance module is compared with the full transient orbital analysis, suggesting that the quasi-linear module predicts the non-linear unbalance response with <6% deviation for amplitudes up to e < 0.5 within the complete compressibility number range.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3