A Numerical Study of the Unsteady Interaction Effects on Diffuser Performance in a Centrifugal Compressor

Author:

Anish S.1,Sitaram N.2,Kim H. D.3

Affiliation:

1. Fluid Machinery Technology and Research Centre, Daejoo Machinery Co. Ltd., 1028 Wolam-dong, Dalseo, Daegu 704-833, South Koreae-mail:

2. Professor Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600-036, Tamil Nadu, India e-mail:

3. Professor School of Mechanical Engineering, Andong National University, 388 Songchun-Dong, Andong, Gyeongbuk 760-749, South Koreae-mail:

Abstract

Interaction between rotating impeller and stationary diffuser in a centrifugal compressor is of practical importance in evaluating system performance. The present study aims at investigating how the interaction influences the unsteady diffuser performance and understanding the physical phenomena in the centrifugal compressor. A computational fluid dynamics (CFD) method has been applied to predict the flow field in the compressor, which has a conventional vaned diffuser (VD) and a low solidity vaned diffuser (LSVD). The radial gaps between impeller and diffuser and different flow coefficients are varied. The results obtained show that the major parameter that influences the unsteady variation of diffuser performance is due to the circumferential variation of the flow angle at the diffuser vane leading edge. The physical phenomena behind the pressure recovery variation are identified as the unsteady vortex shedding and the associated energy losses. The vortex core region as well as the shedding of vortices from the diffuser vane are triggered by the variation in the diffuser vane loading, which in turn is influenced by the circumferential variation of the impeller wake region. There is little unsteady variation of flow angle in the span-wise direction. This indicates that the steady state performance characteristics are related to the span-wise variation of flow angle, while the unsteady characteristics are contributed by the circumferential variation of flow angle. At design conditions, dominant frequency components of pressure fluctuation are all periodic and at near stall, these are aperiodic.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3