The Role of Pinnae Flapping Motion on Elephant Metabolic Heat Dissipation

Author:

Koffi Moise1,Andreopoulos Yiannis2,Jiji Latif M.2

Affiliation:

1. Department of Academic Affairs, CUNY-Hostos Community College, 475 Grand Concourse, Bronx, NY 10551 e-mail:

2. Department of Mechanical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031 e-mail:

Abstract

The oscillatory rotational motion of the elephant pinna is considered a key mechanism in metabolic heat dissipation. Limited experimental investigations have revealed that the flapping of the elephant's pinna is responsible for surface heat transfer enhancement. The objective of the present experimental and computational work is to investigate the physics of the flow induced by the pinna's motion and its effects on the heat transfer. This was accomplished by designing, fabricating and testing two full-size laboratory models of elephant pinnae: one rigid and one flexible, both instrumented with small size thermocouples for time-dependent surface temperature measurements. A constant heat flux is applied to both sides of each model which is rotated about a fixed edge with a frequency of 2 rad/s in an infinite domain at ambient conditions. Of interest is the study of the impact of the flexural strength of the model's material on surface heat transfer. Additional computer simulations of the flow and thermal fields revealed a hooked-shape vortex tube around the free edges of the flapping pinna. This result is confirmed by the flow visualization with smoke particles. Both experimental and computational results exhibit local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. Flow visualization indicated significant interaction between the vortical structures shed off the edge and the flexible model's boundary layer. It has been found that the cooling of the flexible model is enhanced by 30%.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3