Constructal Design of Circular Multilayer Microchannel Heat Sinks

Author:

Salimpour Mohammad Reza12,Al-Sammarraie Ahmed T.,Forouzandeh Azadeh3,Farzaneh Mahsa4

Affiliation:

1. Department of Mechanical Engineering,Isfahan University of Technology,Isfahan 84156-83111, Iran;

2. Department of Mechanical Engineering,University of California,Riverside, CA 92521e-mail: salimpour@cc.iut.ac.ir

3. Department of Mechanical Engineering,Isfahan University of Technology,Isfahan 84156-83111, Irane-mail: a.foruzande@me.iut.ac.ir

4. Department of Mechanical andEnergy Engineering,University of North Texas,Denton, TX 76207e-mail: mahsa.farzaneh@unt.edu

Abstract

Abstract Based on the constructal theory concepts, an investigation is carried out to optimize circular multilayer microchannels embedded inside a rectangular heat sink with different numbers of layers and flow configurations. The lower surface of the heat sink is uniformly heated, while both pressure drop and length of the microchannel are fixed. Also, the volume of the heat sink is kept fixed for all studied cases, while the effect of solid volume fraction is examined. All the dimensions of microchannel heat sinks are optimized in a way that the maximum temperature of the microchannel heat sink is minimized. The results emphasize that using triple-layer microchannel heat sink under optimal conditions reduces the maximum temperature about 10.3 °C compared to the single-layer arrangement. Further, employing counter flow configuration in double-layer microchannel improves its thermal performance, while this effect is less pronounced in the triple-layer architecture. In addition, it is revealed that the optimal design can be achieved when the upper channels of a multilayer microchannel heat sink have bigger diameters than the lower ones. Finally, it is observed while using two layers of microchannels is an effective means for cooling improvement, invoking more layers is far less effective and hence is not recommended.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3