Postgrowth Microwave Treatment to Align Carbon Nanotubes

Author:

Nguyen J. J.,Bougher T. L.,Pour Shahid Saeed Abadi P.,Sharma A.1,Graham S.,Cola B. A.2

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

2. e-mail:  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

We show that a commercial microwave oven can be used after growth to increase alignment of carbon nanotubes (CNTs) and reduce their resistance as thermal and electrical interface materials. Forests of multiwall CNTs were grown directly on both sides of aluminum foils by thermal chemical vapor deposition (CVD) and subsequently exposed to a microwave treatment in air. Scanning electron micrographs revealed enhanced vertical alignment of CNTs after postgrowth microwave treatment. The microwave treatment creates an electric field near the CNT growth substrate that aligns the CNTs orthogonally to the growth substrate. Microwaved CNT forests produced increased mechanical stiffness by approximately 58%, and reduced thermal and electrical contact resistances by 44% and 41%, respectively, compared to as-grown forests. These performance changes are attributed to an increase in the real contact area established at the CNT distal ends because of the enhanced forest alignment. This conclusion is consistent with several prior observations in the literature. This work demonstrates a facile method to enhance the alignment of CNTs grown by thermal CVD without the use of in situ plasma or electric field application.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3