On the Fracture Toughness of Pseudoelastic Shape Memory Alloys

Author:

Baxevanis Theocharis1,Landis Chad M.2,Lagoudas Dimitris C.1

Affiliation:

1. Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843–3141 e-mail:

2. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712-0235 e-mail:

Abstract

A finite element analysis of quasi-static, steady-state crack growth in pseudoelastic shape memory alloys is carried out for plane strain, mode I loading. The crack is assumed to propagate at a critical level of the crack-tip energy release rate. Results pertaining to the influence of forward and reverse phase transformation on the near-tip mechanical fields and fracture toughness are presented for a range of thermomechanical parameters and temperature. The fracture toughness is obtained as the ratio of the far-field applied energy release rate to the crack-tip energy release rate. A substantial fracture toughening is observed, in accordance with experimental observations, associated with the energy dissipated by the transformed material in the wake of the growing crack. Reverse phase transformation, being a dissipative process itself, is found to increase the levels of toughness enhancement. However, higher nominal temperatures tend to reduce the toughening of an SMA alloy—although the material's tendency to reverse transform in the wake of the advancing crack tip increases—due to the higher stress levels required for initiation of forward transformation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3