The Travelling Cascade, Constant Volume Heat Exchanger in a Gas Turbine Lead Combined Cycle

Author:

Georgiou Demos P.1

Affiliation:

1. University of Patras, Rion-Patras, Greece

Abstract

When a gas enclosed in a cavity is heated or cooled, its pressure changes with its temperature as well. If a set of two countermoving “driven” cavity cascades employs the same free wall, then the system will operate as a countercurrent heat exchanger. At the exit points of the heat exchanger the two gases can be brought back to their original (atmospheric) pressure by isentropic processes thus producing useful work. The entire set of thermodynamic processes forms a double Lenoir cycle. The exhausts from the two Lenoir cycles may drive two more sets of corresponding cycles, thus allowing for the cascading of the process, until the added useful work becomes insignificant. When this idea is employed as a bottoming cycle in a Gas Turbine lead Combined cycle, employing four sets of Lenoir cycles, the achievable total thermal efficiencies rise to the 75 to 82 % level, athough the amount of heat transferred in all these processes is about 50 % more than that in a modern Brayton-Rankine combined cycle.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3