Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates—Part II: Calibration and Validation

Author:

Beghini Alessandro1,Cusatis Gianluca2,Bažant Zdeněk P.3

Affiliation:

1. Skidmore, Owings and Merrill LLP, 224 South Michigan Avenue, Chicago, IL 60604

2. Civil Engineering Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180

3. Walter P. Murphy Professor and McCormick School Professor of Civil Engineering and Materials Science, CEE Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

Abstract

The spectral stiffness microplane (SSM) model developed in the preceding Part I of this study is verified by comparisons with experimental data for uniaxial and biaxial tests of unidirectional and multidirectional laminates. The model is calibrated by simulating the experimental data on failure stress envelopes analyzed in the recent so-called “World Wide Failure Exercise,” in which various existing theories were compared. The present theory fits the experiments as well as the theories that were best in the exercise. In addition, it can simulate the post-peak softening behavior and fracture, which is important for evaluating the energy-dissipation capability of composite laminate structures. The post-peak softening behavior and fracture are simulated by means of the crack band approach which involves a material characteristic length.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3